

TRITERPENES FROM *GANODERMA LUCIDUM*

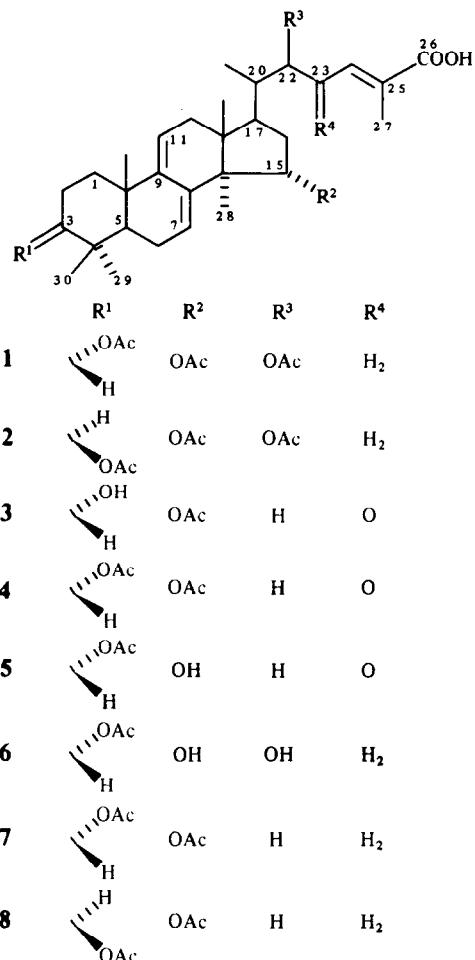
MING-SHI SHIAO, LEE-JUAN LIN and SHEAU-FARN YEH*

Department of Medical Research, Veterans General Hospital, Taipei, Taiwan 11217, R.O.C.; *Department of Biochemistry, National Yang Ming Medical College, Taipei, Taiwan 11217, R.O.C.

(Received 22 December 1987)

Key Word Index—*Ganoderma lucidum*; Polyporaceae; structure determination; triterpenes.

Abstract—The structures of five new lanostanoid triterpenes isolated from the fungus *Ganoderma lucidum* were determined by spectroscopic methods.


INTRODUCTION

Ganoderma lucidum (Fr.) Karst, a fungus which is widely used in traditional Chinese medicine, is rich in oxygenated lanosterol-derived triterpenoids. Over 80 new compounds have been isolated so far [1-20]. In a continuation of our study on hypocholesterolemic principles, we have now isolated from this fungus six further poly-oxygenated triterpenes (1-6), five of which are new compounds.

RESULTS AND DISCUSSION

The UV spectra of compounds 1-6 revealed that all these triterpenes possessed a transoid heteroannular diene as part of their structures: they showed almost identical absorption at 252, 243 and 235 nm (MeOH), and, in the case of compounds 1, 2 and 6, end absorption near 210 nm. Compounds 1 and 2 both gave a molecular ion peak at *m/z* 612 ($C_{36}H_{52}O_8$) (EIMS, 12 eV) and three common fragment ion peaks at *m/z* 552 [$M - HOAc$]⁺, 492 [$M - 2HOAc$]⁺ and 432 [$M - 3HOAc$]⁺. This demonstrated clearly that both compounds had three acetoxy groups. A prominent fragment ion peak at *m/z* 353 [$M - HOAc - C_{10}H_{15}O_4$ side-chain]⁺ indicated they had the same side-chain at C-17 and that one of these acetoxy groups was located on the side chain. The close resemblance in mass fragmentation patterns strongly suggested that these compounds were either positional or stereo-isomers.

The ¹H NMR spectra (Bruker AM-400) of 1 and 2 (Table 1) also showed similar chemical shifts and coupling patterns for H-7, H-11, H-15 and H-24, but not for those signals adjacent to H-3. A singlet at δ 4.65 in the spectrum of 1 suggested that one of its acetoxy groups was at C-3 α . In compound 2, a methine proton signal at δ 4.48 (*dd*, *J*=4.5, 11.3 Hz) indicated the presence of C-3 β acetoxy group. Similar chemical shifts and splitting patterns for H-15 β in 1 (δ 5.04, *dd*), 2 (δ 5.06, *dd*) and other structurally related triterpenes [15] showed that the second acetoxy group was at C-15 α . An additional methine proton signal appeared at δ 4.99 (*t*, *J*=6.6 Hz) in 1 and δ 5.00 (*t*, *J*=7.1 Hz) in 2, but was not observed in the corresponding compounds 7 and 8; this suggested that the remaining acetoxy group was most likely on the side-

chain. This observation was in agreement with the mass spectral data. The 2D-homonuclear COSY spectrum of 1 showed that H-24 was coupled to two methylene protons assignable to H-23, which in turn was coupled to the H-22 methine proton. The attachment of the third acetoxy

Table 1. ^1H NMR spectral data of compounds **1–6** (400 MHz, CDCl_3)

H	1	2	3	4	5	6
3	4.65 s	4.48 dd (4.5, 11.3)*	3.44 s	4.66 s	4.62 s	4.64 s
7	5.45 m	5.45 d (4.9)	5.47 m	5.47 m	5.79 d (5.2)	5.82 d (4.4)
11	5.30 d (4.6)	5.29 d (5.8)	5.33 d (5.4)	5.31 d (5.6)	5.26 d (5.5)	5.28 d (5.4)
15	5.04 dd (5.0, 10.0)	5.06 dd (5.5, 10.6)	5.04 dd (5.4, 10.0)	5.05 dd (4.7, 9.1)	4.26 dd (4.8, 9.4)	4.25 dd (6.1, 8.9)
18	0.63 s	0.62 s	0.69 s	0.69 s	0.61 s	0.56 s
19	0.96 s†	0.96 s†	1.01 s†	1.04 s†	0.95 s†	0.96 s†
21	0.94 d (9.2)	0.94 d (7.7)	0.89 d (7.2)	0.90 d (6.3)	0.86 d (6.4)	0.93 d (6.5)
22	4.99 t (6.6)	5.00 t (7.1)	2.56 d (14.8)	2.57 d (14.9)	2.54 d (16.1)	4.55 m
24	6.69 t (7.0)	6.75 t (7.2)	7.08 d (1.3)	7.10 d (1.1)	7.08 br s	6.68 d (8.9)
27	1.80 s	1.84 s	2.19 s	2.18 s	2.16 s	1.86 s
28	1.00 s†	0.96 s†	0.97 s†	0.97 s†	0.93 s†	0.95 s†
29	0.86 s†	0.87 s†	0.91 s†	0.86 s†	0.82 s†	0.85 s†
30	0.95 s†	0.92 s†	0.97 s†	0.96 s†	0.94 s†	0.96 s†
OAc	2.05 s	2.06 s	2.07 s	2.07 s	1.99 s	2.07 s
OAc	2.03 s	2.04 s	—	2.03 s	—	—
OAc	2.02 s	2.04 s	—	—	—	—

*Values in parentheses are coupling constants in Hz.

†Tentative assignments.

group on the side chain was thus assigned to C-22. A comparison of the spectral data of **1** with those reported for ganoderic acids led to the conclusion that H-22 was in the α configuration [10].

DEPT experiments were carried out for **1** and **2**, and the spectra compared with those of compounds **7** and **8**. This showed that both compounds **1** and **2** had one more CH-type carbon signal at δ 74.54 and 74.37, respectively, besides one additional carbonyl and CH_3 carbon, and one fewer CH_2 -type carbon signal as compared with those of **7** and **8** [18]. Furthermore, an upfield shift of the C-24 (*ca* 6.6 ppm) signal and a downfield shift of the C-25 (*ca* 3.0 ppm) signal were also observed in **1** and **2**, which indicated that the side-chain acetoxy group was at C-22. Confirmation of the stereochemistry of the C-3 acetoxy group was based on the ^{13}C chemical shift of the C-3 signal, which was δ 77.93 (α -actoxy) in **1** and 80.69 (β -actoxy) in **2**. Compounds **1** and **2** were thus a pair of stereoisomers at C-3 and their structures were assigned as lanosta-7,9(11),24-trien-3 α ,15 α ,22 β -triacetoxy-26-oic acid (**1**) and lanosta-7,9(11),24-trien-3 β ,15 α ,22 β -triacetoxy-26-oic acid (**2**), respectively. Compound **1** was found to be identical with ganoderic acid T [10].

Compounds **3** and **5** had identical molecular ion peaks at m/z 526 ($\text{C}_{32}\text{H}_{46}\text{O}_6$). Three common fragment ion peaks at m/z 508 [$\text{M} - \text{H}_2\text{O}$]⁺, 466 [$\text{M} - \text{HOAc}$]⁺ and 448 [$\text{M} - \text{HOAc} - \text{H}_2\text{O}$]⁺ indicated that these compounds possessed one hydroxy group and one acetoxy group. A prominent ion peak at m/z 293 [$\text{M} - \text{HOAc} - \text{H}_2\text{O} - \text{C}_8\text{H}_{11}\text{O}_3$ side-chain]⁺ further revealed that both compounds had the same side-chain at C-17. However, a distinct fragment ion peak at m/z 257 was observed in **3** due to a facile D-ring cleavage not observed in **5**. This

suggested that **3** had an acetoxy group on the D-ring. Examination of the ^1H NMR spectra of **3** and **5** confirmed that **3** had an acetoxy group at C-15 α (δ 5.04, *dd*) and **5** had a C-15 hydroxy group (δ 4.26, *dd*) in the same configuration. Compared to **3** and **5**, compound **4** had a mass 42 units heavier ($\text{C}_{34}\text{H}_{48}\text{O}_7$, m/z 568) indicating that this compound possessed one additional acetoxy group. This was confirmed by the presence of two major fragment ion peaks at m/z 508 [$\text{M} - \text{HOAc}$]⁺ and 448 [$\text{M} - 2\text{HOAc}$]⁺. A prominent fragment ion peak at m/z 353 [$\text{M} - \text{HOAc} - \text{C}_8\text{H}_{11}\text{O}_3$ side-chain]⁺ indicated that **3–5** all had the same side-chain at C-17. Compounds **3** and **4** showed a unique fragment ion peak at m/z 299 [D-ring cleavage – Me]⁺, denoting the presence of an acetoxy group on D-ring.

Comparison of the ^1H NMR data of **3–5** confirmed that these compounds all had the same configuration (β) for H-3, with a hydroxy group (δ 3.44, *s*) for **3** and an acetoxy group for **4** (δ 4.66, *s*) and **5** (δ 4.62, *s*). Similar chemical shifts of H-15 β in **3** (δ 5.04) and **4** (δ 5.05) indicated that both compounds bore an acetoxy group at C-15 α . The upfield shift of H-15 to δ 4.26 (*dd*, *J* = 4.8, 9.4 Hz) in **5** clearly revealed that **5** had a hydroxy group at C-15 α [19]. The presence of an additional conjugation in the side-chain of **3–5** was observed in their UV spectra (252, 243, 235 nm) and further confirmed by their NMR data. The downfield shifts of H-24 (δ 7.08–7.10) by 0.3 ppm and H-27 by 0.4 ppm as compared with those of **7** and **8** suggested that a carbonyl functionality was most likely at C-23. Furthermore, the collapse of a triplet signal to a small doublet as observed in **3** (δ 7.08, *d*, *J* = 1.3 Hz) and **4** (δ 7.10, *d*, *J* = 1.1 Hz) and to a broad singlet in **5** (δ 7.08, *br s*) for H-24 indicated that H-24 did not have any

Table 2. ^{13}C NMR spectral data of compounds **1–6** (100.6 MHz, CDCl_3)

C	1	2	3	4	5	6
1	30.47 <i>t</i>	35.36 <i>t</i>	29.88 <i>t</i>	30.51 <i>t</i>	30.62 <i>t</i>	30.54 <i>t</i>
2	22.09 <i>t</i>	24.17 <i>t</i>	25.54 <i>t</i>	23.02 <i>t</i>	23.14 <i>t</i>	23.05 <i>t</i>
3	77.93 <i>d</i>	80.69 <i>d</i>	76.68 <i>d</i>	78.01 <i>d</i>	78.06 <i>d</i>	78.00 <i>d</i>
4	36.39 <i>s</i>	37.55 <i>s</i>	37.33 <i>s</i>	36.43 <i>s</i>	36.52 <i>s</i>	36.43 <i>s</i>
5	43.76 <i>d</i>	48.91 <i>d</i>	42.91 <i>d</i>	43.84 <i>d</i>	44.03 <i>d</i>	43.94 <i>d</i>
6	22.69 <i>t</i>	22.83 <i>t</i>	22.95 <i>t</i>	22.73 <i>t</i>	22.79 <i>t</i>	22.70 <i>t</i>
7	121.22 <i>d</i>	121.32 <i>d</i>	121.49 <i>d</i>	121.26 <i>d</i>	121.37 <i>d</i>	121.23 <i>d</i>
8	139.87 <i>s</i>	140.00 <i>s</i>	140.02 <i>s</i>	139.95 <i>s</i>	140.61 <i>s</i>	140.56 <i>s</i>
9	145.85 <i>s</i>	145.75 <i>s</i>	145.98 <i>s</i>	145.84 <i>s</i>	146.11 <i>s</i>	146.05 <i>s</i>
10	37.19 <i>s</i>	37.28 <i>s</i>	37.33 <i>s</i>	37.25 <i>s</i>	37.33 <i>s</i>	37.22 <i>s</i>
11	115.27 <i>d</i>	115.85 <i>d</i>	115.46 <i>d</i>	115.41 <i>d</i>	115.54 <i>d</i>	115.42 <i>d</i>
12	37.84 <i>t</i>	37.95 <i>t</i>	37.85 <i>t</i>	37.76 <i>t</i>	38.33 <i>t</i>	38.33 <i>t</i>
13	43.82 <i>s</i>	43.87 <i>s</i>	44.14 <i>s</i>	44.09 <i>s</i>	44.51 <i>s</i>	44.26 <i>s</i>
14	51.28 <i>s</i>	51.31 <i>s</i>	51.68 <i>s</i>	51.42 <i>s</i>	52.18 <i>s</i>	51.98 <i>s</i>
15	77.12 <i>d</i>	77.00 <i>d</i>	77.00 <i>d</i>	77.22 <i>d</i>	74.57 <i>d</i>	74.51 <i>d</i>
16	36.42 <i>t</i>	36.63 <i>t</i>	37.17 <i>t</i>	37.05 <i>t</i>	40.05 <i>t</i>	40.15 <i>t</i>
17	45.33 <i>d</i>	45.39 <i>d</i>	48.74 <i>d</i>	48.64 <i>d</i>	48.84 <i>d</i>	49.23 <i>d</i>
18	15.62 <i>q</i>	15.73 <i>q</i>	15.99 <i>q</i>	15.89 <i>q</i>	15.97 <i>q</i>	15.74 <i>q</i>
19	22.51 <i>q</i>	22.83 <i>q</i>	22.64 <i>q</i>	22.53 <i>q</i>	22.66 <i>q</i>	22.54 <i>q</i>
20	39.48 <i>d</i>	39.55 <i>d</i>	32.80 <i>d</i>	32.75 <i>d</i>	32.95 <i>d</i>	33.42 <i>d</i>
21	12.60 <i>q</i>	12.63 <i>q</i>	19.37 <i>q</i>	19.30 <i>q</i>	19.57 <i>q</i>	19.41 <i>q</i>
22	74.54 <i>d</i>	74.37 <i>d</i>	51.51 <i>t</i>	51.54 <i>t</i>	51.88 <i>t</i>	67.02 <i>d</i>
23	31.80 <i>t</i>	31.88 <i>t</i>	201.57 <i>s</i>	201.44 <i>s</i>	201.75 <i>s</i>	43.57 <i>t</i>
24	137.62 <i>d</i>	139.03 <i>d</i>	133.83 <i>d</i>	133.92 <i>d</i>	134.09 <i>d</i>	144.80 <i>d</i>
25	130.27 <i>s</i>	129.17 <i>s</i>	139.48 <i>s</i>	139.36 <i>s</i>	139.34 <i>s</i>	128.31 <i>s</i>
26	172.90 <i>s</i>	171.28 <i>s</i>	171.21 <i>s</i>	171.82 <i>s</i>	170.99 <i>s</i>	171.95 <i>s</i>
27	12.31 <i>q</i>	12.31 <i>q</i>	14.09 <i>q</i>	13.92 <i>q</i>	14.09 <i>q</i>	12.64 <i>q</i>
28	18.31 <i>q</i>	18.38 <i>q</i>	18.51 <i>q</i>	18.33 <i>q</i>	17.23 <i>q</i>	17.12 <i>q</i>
29	27.62 <i>q</i>	28.07 <i>q</i>	28.18 <i>q</i>	27.66 <i>q</i>	27.77 <i>q</i>	27.65 <i>q</i>
30	22.30 <i>q</i>	16.91 <i>q</i>	22.64 <i>q</i>	22.33 <i>q</i>	22.46 <i>q</i>	22.34 <i>q</i>
AcCO	170.94 <i>s</i>	171.12 <i>s</i>	171.04 <i>s</i>	171.08 <i>s</i>	170.86 <i>s</i>	170.72 <i>s</i>
AcCO	170.67 <i>s</i>	170.63 <i>s</i>	—	170.72 <i>s</i>	—	—
AcCO	170.67 <i>s</i>	170.01 <i>s</i>	—	—	—	—
AcMe	21.25 <i>q</i>	21.41 <i>q</i>	21.39 <i>q</i>	21.23 <i>q</i>	21.30 <i>q</i>	21.16 <i>q</i>
AcMe	21.14 <i>q</i>	21.30 <i>q</i>	—	21.16 <i>q</i>	—	—
AcMe	20.89 <i>q</i>	21.01 <i>q</i>	—	—	—	—

vicinal coupling proton. The 2D-homonuclear COSY spectrum of **4** showed that H-24 was coupled only to H-27. A carbonyl signal appeared at δ 201 in the ^{13}C NMR spectra of **3–5**, further confirming this assignment. Due to the presence of an α,β -unsaturated ketone group in the side-chain, a significant upfield shift of C-24 (*ca* 11 ppm) and a downfield shift of C-25 (*ca* 12 ppm) was observed in the spectra of compounds **3–5** when they were compared with those of compounds **7** and **8**. The structures of **3–5** were therefore determined to be lanosta-7,9(11),24-trien-15 α -acetoxy-3 α -hydroxy-23-oxo-26-oic acid, lanosta-7,9(11),24-trien-3 α ,15 α -diacetoxy-23-oxo-26-oic acid and lanosta-7,9(11),24-trien-3 α -acetoxy-15 α -hydroxy-23-oxo-26-oic acid, respectively.

Compound **6** gave a molecular ion peak at m/z 528 ($\text{C}_{32}\text{H}_{48}\text{O}_6$) and four major fragment ion peaks at m/z 510 [$\text{M} - \text{H}_2\text{O}$]⁺, 492 [$\text{M} - 2\text{H}_2\text{O}$]⁺, 468 [$\text{M} - \text{HOAc}$]⁺ and 432 [$\text{M} - 2\text{H}_2\text{O} - \text{HOAc}$]⁺ indicating that this compound had two hydroxy groups and one acetoxy group. A fragment ion peak at m/z 353 [$\text{M} - \text{H}_2\text{O} - \text{C}_8\text{H}_{13}\text{O}_3$ side-chain]⁺ further revealed that the acetoxy group was not located on the C-17 side-chain. A typical singlet at δ 4.64 in the ^1H NMR spectrum of **6**

indicated that the acetoxy group was at C-3 α [15, 16]. The upfield shift of the H-15 (δ 4.25) and H-22 (δ 4.55) signals, when compared with those of **1**, clearly indicated that both C-15 and C-22 bore a hydroxy group [19]. A similar upfield shift of the C-15 and C-22 signals in the ^{13}C NMR spectrum of **6** confirmed the assignments. After alkaline hydrolysis of **6**, the corresponding triol was obtained, further supporting the structural assignment. Compound **6** was thus determined to be lanosta-7,9(11),24-trien-3 α -acetoxy-15 α ,22 β -dihydroxy-26-oic acid.

EXPERIMENTAL

Mycelia were harvested from a 30-day-old liquid culture (300 ml \times 30, in 1 l culture flask) of *G. lucidum* (strain TP-1, collected locally and deposited at the Institute of Botany, Academia Sinica, R.O.C.). After filtration through 4 layers of cheese cloth and a gentle rinse with H_2O , the biomass (56 g) was ground to a powder and extracted with MeOH. The conc extract was partitioned between *n*-hexane and H_2O and the aq. layer was re-extracted with EtOAc. The EtOAc fractions were pooled and chromatographed on a silica gel column (45 \times 2.5 cm) by

stepwise elution with increasing percentages of MeOH in CHCl_3 . The fractions containing **1** and **2** were combined and chromatographed by reversed phase high performance TLC (E. Merck HPTLC RP-18, F_{254} ; 0.25 mm thickness; MeCN-HOAc, 100:0.1). Elution of the band at R_f 0.42 with MeOH yielded **1** (14.0 mg) (mp 138–140°) and the band at R_f 0.38 afforded **2** (3.5 mg) [21].

Purification of the more polar fractions by TLC (Merck Kieselgel 60 F_{254} ; 0.25 mm thickness; *n*-hexane-Et₂O-EtOAc-HOAc, 400:200:200:1) gave two bands. The bands at R_f 0.14 and 0.18 were further purified separately by reversed phase HPTLC (MeCN-HOAc, 1000:1) to afford **3** (1.8 mg) and **4** (12.5 mg), respectively. Another column fraction, which migrated after compounds **3** and **4**, was subjected to TLC (*n*-hexane-Et₂O-EtOAc-HOAc, 200:200:200:1, triple development) three major bands were obtained. Purification of the band at R_f 0.20 by TLC (CHCl_3 -Et₂O-MeOH, 9:1:1, triple development) yielded **5** (3.0 mg) and the band at R_f 0.14 in the same way afforded **6** (13.8 mg) (mp 198–199°).

Acknowledgements—This work was supported by the National Science Council and the Veterans General Hospital, R.O.C.

REFERENCES

1. Kubota, T., Asaka, Y., Miura, I. and Mori, H. (1982) *Helv. Chim. Acta* **65**, 611.
2. Toth, J. O., Luu, B., Beck, J.-P. and Ourisson, G. (1983) *J. Chem. Res. (M)* 2722.
3. Nishitoba, T., Sato, H., Kasai, T., Kawagishi, H. and Sakamura, S. (1984) *Agric. Biol. Chem.* **48**, 2905.
4. Nishitoba, T., Sato, H. and Sakamura, S. (1985) *Agric. Biol. Chem.* **49**, 1547.
5. Kohda, H., Tokumoto, W., Sakamoto, K., Fujii, M., Hirai, Y., Yamasaki, K., Komoda, Y., Nakamura, H., Ishihara, S. and Uchida, M. (1985) *Chem. Pharm. Bull.* **33**, 1367.
6. Kikuchi, T., Matsuda, S., Kadota, S., Murai, Y. and Ogita, Z. (1985) *Chem. Pharm. Bull.* **33**, 2624.
7. Komoda, Y., Nakamura, H., Ishihara, S., Uchida, M., Kohda, H. and Yamasaki, K. (1985) *Chem. Pharm. Bull.* **33**, 4829.
8. Nishitoba, T., Sato, H. and Sakamura, S. (1986) *Agric. Biol. Chem.* **50**, 809.
9. Sato, H., Nishitoba, T., Shirasu, S., Oda, K. and Sakamura, S. (1986) *Agric. Biol. Chem.* **50**, 2887.
10. Hirotani, M., Ino, C., Furuya, T. and Shiro, M. (1986) *Chem. Pharm. Bull.* **34**, 2282.
11. Morigiwa, A., Kitabatake, K., Fujimoto, Y. and Ikekawa, N. (1986) *Chem. Pharm. Bull.* **34**, 3025.
12. Arisawa, M., Fujita, A., Saga, M., Fukumura, H., Hayashi, T., Shimizu, M. and Morita, N. (1986) *J. Nat. Prod.* **49**, 621.
13. Fujita, A., Arisawa, M., Saga, M., Hayashi, T. and Morita, N. (1986) *J. Nat. Prod.* **49**, 1122.
14. Hirotani, M. and Furuya, T. (1986) *Phytochemistry* **25**, 1189.
15. Nishitoba, T., Sato, H., Shirasu, S. and Sakamura, S. (1987) *Agric. Biol. Chem.* **51**, 619.
16. Nishitoba, T., Sato, H. and Sakamura, S. (1987) *Agric. Biol. Chem.* **51**, 1149.
17. Nishitoba, T., Sato, H. and Sakamura, S. (1987) *Phytochemistry* **26**, 1777.
18. Shiao, M.-S., Lin, L.-J., Yeh, S.-F. and Chou, C.-S. (1987) *J. Nat. Prod.* **50**, 886.
19. Shiao, M.-S., Lin, L.-J. and Yeh, S.-F. (1988) *Phytochemistry* **27**, 873.
20. Lin, L.-J., Shiao, M.-S. and Yeh, S.-F. (1988) *Phytochemistry* **27**, 2269.
21. Lin, L.-J. and Shiao, M.-S. (1987) *J. Chromatography* **410**, 195.